Welcome to

Atomic Materials for Catalysis Research Group

bullet imagebullet image

Our research group works on the heterogeneous catalysis for renewable energy and sustainable chemistry, and nano/micro-scale stretchable energy storage devices for powering nano-bioelectronics and microelectronics.  We aim to develop catalysts based on atomic-scale design for conversion of abundant feedstocks like C1 molecules into value-added chemicals or fuels and biomass upgrading to biofuels and hydrocarbons. We also target to enhance the fundamental understanding of electronic and geometric structure-catalysis relationship. Meanwhile we integrate materials science, chemical engineering and electrical  engineering to design and fabricate nano/micro-scale flexible electrochemical energy storage devices.


12/15/2017 Our paper entitled "Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots" is published in Science Advances.

10/4/2017 Dr. Jingjie Wu presented "Atomic carbon based electrocatalysts for CO2 reduction" in 232nd ECS meeting, National Harbor, MD.

09/15/2017 The paper titled "Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution" was selected as Cover Page in Nature Energy.

08/15/2017 The first Ph.D. student Tianyu Zhang from East China University of Science and Technology joins the group.

08/15/2017 The Atomic Materials for Catalysis Research Group led by Dr. Jingjie Wu is officially launched in University of Cincinnati.  

07/11/2017 Dr. Jingjie Wu was invited to attend DOE listening day in San Diego.

Learn More >


  Hydrogen evolution: Not living on the edge

Transition-metal dichalcogenides are appealing catalysts for Hgeneration from water. They tend to rely on scarce edge sites, rather than the more abundant basal-plane sites, to drive catalysis. Now, guided by computation, H-TaS2 and H-NbS2 are proposed as highly basal-plane-active catalysts that improve with electrochemical cycling.

Learn More > Nature Energy NEWS & VIEWS

Learn More > ScienceDaily

Learn More > Rice News

 Doped nanotubes beat heavy metal for CO2 reduction

Avoiding the use of fossil fuels in energy production is high on the sustainability agenda and the likes of wind and solar power have come to the fore as viable alternatives. But, liquid and gas fuels are still needed for many applications. Instead of using fossil fuels, what if we could extract the greenhouse gas carbon dioxide from the atmosphere and convert it into organic fuels in a process driven by wind or solar?

Learn More >


Carbon dots dash toward ‘green’ recycling role

Graphene quantum dots may offer a simple way to recycle waste carbon dioxide into valuable fuel rather than release it into the atmosphere or bury it underground, according to Rice University scientists. 

Learn More >